TestFiniteFieldPolynomialDesignMediumOutputLengthMediumOutputSeedLength
This test is small enough to be doable by hand but already large enough to be quite tedious since we need to compute 60
different polynomials.
\begin{align}
m &= 60\,,\quad t=5\,,\quad d=t^2=25\,,\quad c=\Big\lceil\frac{\log60}{\log5}-1\Big\rceil=2 \\
\alpha_0(0) &= \Big\lfloor\frac{0}{1}\Big\rfloor\mod 5 = 0\,,\quad
\alpha_0(1) = \Big\lfloor\frac{0}{5}\Big\rfloor\mod 5 = 0\,,\quad
\alpha_0(2) = \Big\lfloor\frac{0}{25}\Big\rfloor\mod 5 = 0 \\
p_0(\gamma) &= \alpha_0(0) + \alpha_0(1)\gamma + \alpha_0(2)\gamma^2 = 0 \\
S_0 &= \Big\{\big(0,p_0(0)\big), \big(1,p_0(1)\big), \big(2,p_0(2)\big), \big(3,p_0(3)\big), \big(4,p_0(4)\big)\Big\} \\
&= \Big\{\big(0,0\big), \big(1,0\big), \big(2,0\big), \big(3,0\big), \big(4,0\big)\Big\} = \big\{0,1,2,3,4\big\}
\end{align}
\begin{align}
\alpha_1(0) &= \Big\lfloor\frac{1}{1}\Big\rfloor\mod 5 = 1\,,\quad
\alpha_1(1) = \Big\lfloor\frac{1}{5}\Big\rfloor\mod 5 = 0\,,\quad
\alpha_1(2) = \Big\lfloor\frac{1}{25}\Big\rfloor\mod 5 = 0 \\
p_1(\gamma) &= \alpha_1(0) + \alpha_1(1)\gamma + \alpha_1(2)\gamma^2 = 1 \\
S_1 &= \Big\{\big(0,p_1(0)\big), \big(1,p_1(1)\big), \big(2,p_1(2)\big), \big(3,p_1(3)\big), \big(4,p_1(4)\big)\Big\} \\
&= \Big\{\big(0,1\big), \big(1,1\big), \big(2,1\big), \big(3,1\big), \big(4,1\big)\Big\} = \big\{5,6,7,8,9\big\}
\end{align}
\begin{align}
\alpha_2(0) &= \Big\lfloor\frac{2}{1}\Big\rfloor\mod 5 = 2\,,\quad
\alpha_2(1) = \Big\lfloor\frac{2}{5}\Big\rfloor\mod 5 = 0\,,\quad
\alpha_2(2) = \Big\lfloor\frac{2}{25}\Big\rfloor\mod 5 = 0 \\
p_2(\gamma) &= \alpha_2(0) + \alpha_2(1)\gamma + \alpha_2(2)\gamma^2 = 2 \\
S_2 &= \Big\{\big(0,p_2(0)\big), \big(1,p_2(1)\big), \big(2,p_2(2)\big), \big(3,p_2(3)\big), \big(4,p_2(4)\big)\Big\} \\
&= \Big\{\big(0,2\big), \big(1,2\big), \big(2,2\big), \big(3,2\big), \big(4,2\big)\Big\} = \big\{10,11,12,13,14\big\}
\end{align}
\begin{align}
\alpha_3(0) &= \Big\lfloor\frac{3}{1}\Big\rfloor\mod 5 = 3\,,\quad
\alpha_3(1) = \Big\lfloor\frac{3}{5}\Big\rfloor\mod 5 = 0\,,\quad
\alpha_3(2) = \Big\lfloor\frac{3}{25}\Big\rfloor\mod 5 = 0 \\
p_3(\gamma) &= \alpha_3(0) + \alpha_3(1)\gamma + \alpha_3(2)\gamma^2 = 3 \\
S_3 &= \Big\{\big(0,p_3(0)\big), \big(1,p_3(1)\big), \big(2,p_3(2)\big), \big(3,p_3(3)\big), \big(4,p_3(4)\big)\Big\} \\
&= \Big\{\big(0,3\big), \big(1,3\big), \big(2,3\big), \big(3,3\big), \big(4,3\big)\Big\} = \big\{15,16,17,18,19\big\}
\end{align}
\begin{align}
\alpha_4(0) &= \Big\lfloor\frac{4}{1}\Big\rfloor\mod 5 = 4\,,\quad
\alpha_4(1) = \Big\lfloor\frac{4}{5}\Big\rfloor\mod 5 = 0\,,\quad
\alpha_4(2) = \Big\lfloor\frac{4}{25}\Big\rfloor\mod 5 = 0 \\
p_4(\gamma) &= \alpha_4(0) + \alpha_4(1)\gamma + \alpha_4(2)\gamma^2 = 4 \\
S_4 &= \Big\{\big(0,p_4(0)\big), \big(1,p_4(1)\big), \big(2,p_4(2)\big), \big(3,p_4(3)\big), \big(4,p_4(4)\big)\Big\} \\
&= \Big\{\big(0,4\big), \big(1,4\big), \big(2,4\big), \big(3,4\big), \big(4,4\big)\Big\} = \big\{20,21,22,23,24\big\}
\end{align}
\begin{align}
\alpha_5(0) &= \Big\lfloor\frac{5}{1}\Big\rfloor\mod 5 = 0\,,\quad
\alpha_5(1) = \Big\lfloor\frac{5}{5}\Big\rfloor\mod 5 = 1\,,\quad
\alpha_5(2) = \Big\lfloor\frac{5}{25}\Big\rfloor\mod 5 = 0 \\
p_5(\gamma) &= \alpha_5(0) + \alpha_5(1)\gamma + \alpha_5(2)\gamma^2 = \gamma \\
S_5 &= \Big\{\big(0,p_5(0)\big), \big(1,p_5(1)\big), \big(2,p_5(2)\big), \big(3,p_5(3)\big), \big(4,p_5(4)\big)\Big\} \\
&= \Big\{\big(0,0\big), \big(1,1\big), \big(2,2\big), \big(3,3\big), \big(4,4\big)\Big\} = \big\{0,6,12,18,24\big\}
\end{align}
\begin{align}
\alpha_6(0) &= \Big\lfloor\frac{6}{1}\Big\rfloor\mod 5 = 1\,,\quad
\alpha_6(1) = \Big\lfloor\frac{6}{5}\Big\rfloor\mod 5 = 1\,,\quad
\alpha_6(2) = \Big\lfloor\frac{6}{25}\Big\rfloor\mod 5 = 0 \\
p_6(\gamma) &= \alpha_6(0) + \alpha_6(1)\gamma + \alpha_6(2)\gamma^2 = \gamma + 1\\
S_6 &= \Big\{\big(0,p_6(0)\big), \big(1,p_6(1)\big), \big(2,p_6(2)\big), \big(3,p_6(3)\big), \big(4,p_6(4)\big)\Big\} \\
&= \Big\{\big(0,1\big), \big(1,2\big), \big(2,3\big), \big(3,4\big), \big(4,0\big)\Big\} = \big\{5,11,17,23,4\big\}
\end{align}
\begin{align}
\alpha_7(0) &= \Big\lfloor\frac{7}{1}\Big\rfloor\mod 5 = 2\,,\quad
\alpha_7(1) = \Big\lfloor\frac{7}{5}\Big\rfloor\mod 5 = 1\,,\quad
\alpha_7(2) = \Big\lfloor\frac{7}{25}\Big\rfloor\mod 5 = 0 \\
p_7(\gamma) &= \alpha_7(0) + \alpha_7(1)\gamma + \alpha_7(2)\gamma^2 = \gamma + 2\\
S_7 &= \Big\{\big(0,p_7(0)\big), \big(1,p_7(1)\big), \big(2,p_7(2)\big), \big(3,p_7(3)\big), \big(4,p_7(4)\big)\Big\} \\
&= \Big\{\big(0,2\big), \big(1,3\big), \big(2,4\big), \big(3,0\big), \big(4,1\big)\Big\} = \big\{10,16,22,3,9\big\}
\end{align}
\begin{align}
\alpha_8(0) &= \Big\lfloor\frac{8}{1}\Big\rfloor\mod 5 = 3\,,\quad
\alpha_8(1) = \Big\lfloor\frac{8}{5}\Big\rfloor\mod 5 = 1\,,\quad
\alpha_8(2) = \Big\lfloor\frac{8}{25}\Big\rfloor\mod 5 = 0 \\
p_8(\gamma) &= \alpha_8(0) + \alpha_8(1)\gamma + \alpha_8(2)\gamma^2 = \gamma + 3\\
S_8 &= \Big\{\big(0,p_8(0)\big), \big(1,p_8(1)\big), \big(2,p_8(2)\big), \big(3,p_8(3)\big), \big(4,p_8(4)\big)\Big\} \\
&= \Big\{\big(0,3\big), \big(1,4\big), \big(2,0\big), \big(3,1\big), \big(4,2\big)\Big\} = \big\{15,21,2,8,14\big\}
\end{align}
\begin{align}
\alpha_9(0) &= \Big\lfloor\frac{9}{1}\Big\rfloor\mod 5 = 4\,,\quad
\alpha_9(1) = \Big\lfloor\frac{9}{5}\Big\rfloor\mod 5 = 1\,,\quad
\alpha_9(2) = \Big\lfloor\frac{9}{25}\Big\rfloor\mod 5 = 0 \\
p_9(\gamma) &= \alpha_9(0) + \alpha_9(1)\gamma + \alpha_9(2)\gamma^2 = \gamma + 4\\
S_9 &= \Big\{\big(0,p_9(0)\big), \big(1,p_9(1)\big), \big(2,p_9(2)\big), \big(3,p_9(3)\big), \big(4,p_9(4)\big)\Big\} \\
&= \Big\{\big(0,4\big), \big(1,0\big), \big(2,1\big), \big(3,2\big), \big(4,3\big)\Big\} = \big\{20,1,7,13,19\big\}
\end{align}
Remaining sets are shown using the following compact notation: \(\alpha_j:=[\alpha_j(0),\alpha_j(1),\alpha_j(2)]\).
\begin{align}
\alpha_{10} &= [0, 2, 0]\,\quad p_{10}(\gamma) = 2\gamma \\
S_{10} &= \Big\{\big(0,0\big), \big(1,2\big), \big(2,4\big), \big(3,1\big), \big(4,3\big)\Big\} = \big\{0,11,22,8,19\big\}
\end{align}
\begin{align}
\alpha_{11} &= [1, 2, 0]\,\quad p_{11}(\gamma) = 2\gamma + 1\\
S_{11} &= \Big\{\big(0,1\big), \big(1,3\big), \big(2,0\big), \big(3,2\big), \big(4,4\big)\Big\} = \big\{5,16,2,13,24\big\}
\end{align}
\begin{align}
\alpha_{12} &= [2, 2, 0]\,\quad p_{12}(\gamma) = 2\gamma + 2\\
S_{12} &= \Big\{\big(0,2\big), \big(1,4\big), \big(2,1\big), \big(3,3\big), \big(4,0\big)\Big\} = \big\{10,21,7,18,4\big\}
\end{align}
\begin{align}
\alpha_{13} &= [3, 2, 0]\,\quad p_{13}(\gamma) = 2\gamma + 3\\
S_{13} &= \Big\{\big(0,3\big), \big(1,0\big), \big(2,2\big), \big(3,4\big), \big(4,1\big)\Big\} = \big\{15,1,12,23,9\big\}
\end{align}
\begin{align}
\alpha_{14} &= [4, 2, 0]\,\quad p_{14}(\gamma) = 2\gamma + 4\\
S_{14} &= \Big\{\big(0,4\big), \big(1,1\big), \big(2,3\big), \big(3,0\big), \big(4,2\big)\Big\} = \big\{20,6,17,3,14\big\}
\end{align}
\begin{align}
\alpha_{15} &= [0, 3, 0]\,\quad p_{15}(\gamma) = 3\gamma\\
S_{15} &= \Big\{\big(0,0\big), \big(1,3\big), \big(2,1\big), \big(3,4\big), \big(4,2\big)\Big\} = \big\{0,16,7,23,14\big\}
\end{align}
\begin{align}
\alpha_{16} &= [1, 3, 0]\,\quad p_{16}(\gamma) = 3\gamma + 1\\
S_{16} &= \Big\{\big(0,1\big), \big(1,4\big), \big(2,2\big), \big(3,0\big), \big(4,3\big)\Big\} = \big\{5,21,12,3,19\big\}
\end{align}
\begin{align}
\alpha_{17} &= [2, 3, 0]\,\quad p_{17}(\gamma) = 3\gamma + 2\\
S_{17} &= \Big\{\big(0,2\big), \big(1,0\big), \big(2,3\big), \big(3,1\big), \big(4,4\big)\Big\} = \big\{10,1,17,8,24\big\}
\end{align}
\begin{align}
\alpha_{18} &= [3, 3, 0]\,\quad p_{18}(\gamma) = 3\gamma + 3\\
S_{18} &= \Big\{\big(0,3\big), \big(1,1\big), \big(2,4\big), \big(3,2\big), \big(4,0\big)\Big\} = \big\{15,6,22,13,4\big\}
\end{align}
\begin{align}
\alpha_{19} &= [4, 3, 0]\,\quad p_{19}(\gamma) = 3\gamma + 4\\
S_{19} &= \Big\{\big(0,4\big), \big(1,2\big), \big(2,0\big), \big(3,3\big), \big(4,1\big)\Big\} = \big\{20,11,2,18,9\big\}
\end{align}
\begin{align}
\alpha_{20} &= [0, 4, 0]\,\quad p_{20}(\gamma) = 4\gamma\\
S_{20} &= \Big\{\big(0,0\big), \big(1,4\big), \big(2,3\big), \big(3,2\big), \big(4,1\big)\Big\} = \big\{0,21,17,13,9\big\}
\end{align}
\begin{align}
\alpha_{21} &= [1, 4, 0]\,\quad p_{21}(\gamma) = 4\gamma + 1\\
S_{21} &= \Big\{\big(0,1\big), \big(1,0\big), \big(2,4\big), \big(3,3\big), \big(4,2\big)\Big\} = \big\{5,1,22,18,14\big\}
\end{align}
\begin{align}
\alpha_{22} &= [2, 4, 0]\,\quad p_{22}(\gamma) = 4\gamma + 2\\
S_{22} &= \Big\{\big(0,2\big), \big(1,1\big), \big(2,0\big), \big(3,4\big), \big(4,3\big)\Big\} = \big\{10,6,2,23,19\big\}
\end{align}
\begin{align}
\alpha_{23} &= [3, 4, 0]\,\quad p_{23}(\gamma) = 4\gamma + 3\\
S_{23} &= \Big\{\big(0,3\big), \big(1,2\big), \big(2,1\big), \big(3,0\big), \big(4,4\big)\Big\} = \big\{15,11,7,3,24\big\}
\end{align}
\begin{align}
\alpha_{24} &= [4, 4, 0]\,\quad p_{24}(\gamma) = 4\gamma + 4\\
S_{24} &= \Big\{\big(0,4\big), \big(1,3\big), \big(2,2\big), \big(3,1\big), \big(4,0\big)\Big\} = \big\{20,16,12,8,4\big\}
\end{align}
\begin{align}
\alpha_{25} &= [0, 0, 1]\,\quad p_{25}(\gamma) = \gamma^2\\
S_{25} &= \Big\{\big(0,0\big), \big(1,1\big), \big(2,4\big), \big(3,4\big), \big(4,1\big)\Big\} = \big\{0,6,22,23,9\big\}
\end{align}
\begin{align}
\alpha_{26} &= [1, 0, 1]\,\quad p_{26}(\gamma) = \gamma^2 + 1\\
S_{26} &= \Big\{\big(0,1\big), \big(1,2\big), \big(2,0\big), \big(3,0\big), \big(4,2\big)\Big\} = \big\{5,11,2,3,14\big\}
\end{align}
\begin{align}
\alpha_{27} &= [2, 0, 1]\,\quad p_{27}(\gamma) = \gamma^2 + 2\\
S_{27} &= \Big\{\big(0,2\big), \big(1,3\big), \big(2,1\big), \big(3,1\big), \big(4,3\big)\Big\} = \big\{10,16,7,8,19\big\}
\end{align}
\begin{align}
\alpha_{28} &= [3, 0, 1]\,\quad p_{28}(\gamma) = \gamma^2 + 3\\
S_{28} &= \Big\{\big(0,3\big), \big(1,4\big), \big(2,2\big), \big(3,2\big), \big(4,4\big)\Big\} = \big\{15,21,12,13,24\big\}
\end{align}
\begin{align}
\alpha_{29} &= [4, 0, 1]\,\quad p_{29}(\gamma) = \gamma^2+4 \\
S_{29} &= \Big\{\big(0,4\big), \big(1,0\big), \big(2,3\big), \big(3,3\big), \big(4,0\big)\Big\} = \big\{[20, 1, 17, 18, 4]\big\}
\end{align}
\begin{align}
\alpha_{30} &= [0, 1, 1]\,\quad p_{30}(\gamma) = \gamma^2+\gamma \\
S_{30} &= \Big\{\big(0,0\big), \big(1,2\big), \big(2,1\big), \big(3,2\big), \big(4,0\big)\Big\} = \big\{[0, 11, 7, 13, 4]\big\}
\end{align}
\begin{align}
\alpha_{31} &= [1, 1, 1]\,\quad p_{31}(\gamma) = \gamma^2+\gamma+1 \\
S_{31} &= \Big\{\big(0,1\big), \big(1,3\big), \big(2,2\big), \big(3,3\big), \big(4,1\big)\Big\} = \big\{[5, 16, 12, 18, 9]\big\}
\end{align}
\begin{align}
\alpha_{32} &= [2, 1, 1]\,\quad p_{32}(\gamma) = \gamma^2+\gamma+2 \\
S_{32} &= \Big\{\big(0,2\big), \big(1,4\big), \big(2,3\big), \big(3,4\big), \big(4,2\big)\Big\} = \big\{[10, 21, 17, 23, 14]\big\}
\end{align}
\begin{align}
\alpha_{33} &= [3, 1, 1]\,\quad p_{33}(\gamma) = \gamma^2+\gamma+3 \\
S_{33} &= \Big\{\big(0,3\big), \big(1,0\big), \big(2,4\big), \big(3,0\big), \big(4,3\big)\Big\} = \big\{[15, 1, 22, 3, 19]\big\}
\end{align}
\begin{align}
\alpha_{34} &= [4, 1, 1]\,\quad p_{34}(\gamma) = \gamma^2+\gamma+4 \\
S_{34} &= \Big\{\big(0,4\big), \big(1,1\big), \big(2,0\big), \big(3,1\big), \big(4,4\big)\Big\} = \big\{[20, 6, 2, 8, 24]\big\}
\end{align}
\begin{align}
\alpha_{35} &= [0, 2, 1]\,\quad p_{35}(\gamma) = \gamma^2+2\gamma \\
S_{35} &= \Big\{\big(0,0\big), \big(1,3\big), \big(2,3\big), \big(3,0\big), \big(4,4\big)\Big\} = \big\{[0, 16, 17, 3, 24]\big\}
\end{align}
\begin{align}
\alpha_{36} &= [1, 2, 1]\,\quad p_{36}(\gamma) = \gamma^2+2\gamma+1 \\
S_{36} &= \Big\{\big(0,1\big), \big(1,4\big), \big(2,4\big), \big(3,1\big), \big(4,0\big)\Big\} = \big\{[5, 21, 22, 8, 4]\big\}
\end{align}
\begin{align}
\alpha_{37} &= [2, 2, 1]\,\quad p_{37}(\gamma) = \gamma^2+2\gamma+2 \\
S_{37} &= \Big\{\big(0,2\big), \big(1,0\big), \big(2,0\big), \big(3,2\big), \big(4,1\big)\Big\} = \big\{[10, 1, 2, 13, 9]\big\}
\end{align}
\begin{align}
\alpha_{38} &= [3, 2, 1]\,\quad p_{38}(\gamma) = \gamma^2+2\gamma+3 \\
S_{38} &= \Big\{\big(0,3\big), \big(1,1\big), \big(2,1\big), \big(3,3\big), \big(4,2\big)\Big\} = \big\{[15, 6, 7, 18, 14]\big\}
\end{align}
\begin{align}
\alpha_{39} &= [4, 2, 1]\,\quad p_{39}(\gamma) = \gamma^2+2\gamma+4 \\
S_{39} &= \Big\{\big(0,4\big), \big(1,2\big), \big(2,2\big), \big(3,4\big), \big(4,3\big)\Big\} = \big\{[20, 11, 12, 23, 19]\big\}
\end{align}
\begin{align}
\alpha_{40} &= [0, 3, 1]\,\quad p_{40}(\gamma) = \gamma^2+3\gamma \\
S_{40} &= \Big\{\big(0,0\big), \big(1,4\big), \big(2,0\big), \big(3,3\big), \big(4,3\big)\Big\} = \big\{[0, 21, 2, 18, 19]\big\}
\end{align}
\begin{align}
\alpha_{41} &= [1, 3, 1]\,\quad p_{41}(\gamma) = \gamma^2+3\gamma+1 \\
S_{41} &= \Big\{\big(0,1\big), \big(1,0\big), \big(2,1\big), \big(3,4\big), \big(4,4\big)\Big\} = \big\{[5, 1, 7, 23, 24]\big\}
\end{align}
\begin{align}
\alpha_{42} &= [2, 3, 1]\,\quad p_{42}(\gamma) = \gamma^2+3\gamma+2 \\
S_{42} &= \Big\{\big(0,2\big), \big(1,1\big), \big(2,2\big), \big(3,0\big), \big(4,0\big)\Big\} = \big\{[10, 6, 12, 3, 4]\big\}
\end{align}
\begin{align}
\alpha_{43} &= [3, 3, 1]\,\quad p_{43}(\gamma) = \gamma^2+3\gamma+3 \\
S_{43} &= \Big\{\big(0,3\big), \big(1,2\big), \big(2,3\big), \big(3,1\big), \big(4,1\big)\Big\} = \big\{[15, 11, 17, 8, 9]\big\}
\end{align}
\begin{align}
\alpha_{44} &= [4, 3, 1]\,\quad p_{44}(\gamma) = \gamma^2+3\gamma+4 \\
S_{44} &= \Big\{\big(0,4\big), \big(1,3\big), \big(2,4\big), \big(3,2\big), \big(4,2\big)\Big\} = \big\{[20, 16, 22, 13, 14]\big\}
\end{align}
\begin{align}
\alpha_{45} &= [0, 4, 1]\,\quad p_{45}(\gamma) = \gamma^2+4\gamma \\
S_{45} &= \Big\{\big(0,0\big), \big(1,0\big), \big(2,2\big), \big(3,1\big), \big(4,2\big)\Big\} = \big\{[0, 1, 12, 8, 14]\big\}
\end{align}
\begin{align}
\alpha_{46} &= [1, 4, 1]\,\quad p_{46}(\gamma) = \gamma^2+4\gamma+1 \\
S_{46} &= \Big\{\big(0,1\big), \big(1,1\big), \big(2,3\big), \big(3,2\big), \big(4,3\big)\Big\} = \big\{[5, 6, 17, 13, 19]\big\}
\end{align}
\begin{align}
\alpha_{47} &= [2, 4, 1]\,\quad p_{47}(\gamma) = \gamma^2+4\gamma+2 \\
S_{47} &= \Big\{\big(0,2\big), \big(1,2\big), \big(2,4\big), \big(3,3\big), \big(4,4\big)\Big\} = \big\{[10, 11, 22, 18, 24]\big\}
\end{align}
\begin{align}
\alpha_{48} &= [3, 4, 1]\,\quad p_{48}(\gamma) = \gamma^2+4\gamma+3 \\
S_{48} &= \Big\{\big(0,3\big), \big(1,3\big), \big(2,0\big), \big(3,4\big), \big(4,0\big)\Big\} = \big\{[15, 16, 2, 23, 4]\big\}
\end{align}
\begin{align}
\alpha_{49} &= [4, 4, 1]\,\quad p_{49}(\gamma) = \gamma^2+4\gamma+4 \\
S_{49} &= \Big\{\big(0,4\big), \big(1,4\big), \big(2,1\big), \big(3,0\big), \big(4,1\big)\Big\} = \big\{[20, 21, 7, 3, 9]\big\}
\end{align}
\begin{align}
\alpha_{50} &= [0, 0, 2]\,\quad p_{50}(\gamma) = 2\gamma^2 \\
S_{50} &= \Big\{\big(0,0\big), \big(1,2\big), \big(2,3\big), \big(3,3\big), \big(4,2\big)\Big\} = \big\{[0, 11, 17, 18, 14]\big\}
\end{align}
\begin{align}
\alpha_{51} &= [1, 0, 2]\,\quad p_{51}(\gamma) = 2\gamma^2+1 \\
S_{51} &= \Big\{\big(0,1\big), \big(1,3\big), \big(2,4\big), \big(3,4\big), \big(4,3\big)\Big\} = \big\{[5, 16, 22, 23, 19]\big\}
\end{align}
\begin{align}
\alpha_{52} &= [2, 0, 2]\,\quad p_{52}(\gamma) = 2\gamma^2+2 \\
S_{52} &= \Big\{\big(0,2\big), \big(1,4\big), \big(2,0\big), \big(3,0\big), \big(4,4\big)\Big\} = \big\{[10, 21, 2, 3, 24]\big\}
\end{align}
\begin{align}
\alpha_{53} &= [3, 0, 2]\,\quad p_{53}(\gamma) = 2\gamma^2+3 \\
S_{53} &= \Big\{\big(0,3\big), \big(1,0\big), \big(2,1\big), \big(3,1\big), \big(4,0\big)\Big\} = \big\{[15, 1, 7, 8, 4]\big\}
\end{align}
\begin{align}
\alpha_{54} &= [4, 0, 2]\,\quad p_{54}(\gamma) = 2\gamma^2+4 \\
S_{54} &= \Big\{\big(0,4\big), \big(1,1\big), \big(2,2\big), \big(3,2\big), \big(4,1\big)\Big\} = \big\{[20, 6, 12, 13, 9]\big\}
\end{align}
\begin{align}
\alpha_{55} &= [0, 1, 2]\,\quad p_{55}(\gamma) = 2\gamma^2+\gamma \\
S_{55} &= \Big\{\big(0,0\big), \big(1,3\big), \big(2,0\big), \big(3,1\big), \big(4,1\big)\Big\} = \big\{[0, 16, 2, 8, 9]\big\}
\end{align}
\begin{align}
\alpha_{56} &= [1, 1, 2]\,\quad p_{56}(\gamma) = 2\gamma^2+\gamma+1 \\
S_{56} &= \Big\{\big(0,1\big), \big(1,4\big), \big(2,1\big), \big(3,2\big), \big(4,2\big)\Big\} = \big\{[5, 21, 7, 13, 14]\big\}
\end{align}
\begin{align}
\alpha_{57} &= [2, 1, 2]\,\quad p_{57}(\gamma) = 2\gamma^2+\gamma+2 \\
S_{57} &= \Big\{\big(0,2\big), \big(1,0\big), \big(2,2\big), \big(3,3\big), \big(4,3\big)\Big\} = \big\{[10, 1, 12, 18, 19]\big\}
\end{align}
\begin{align}
\alpha_{58} &= [3, 1, 2]\,\quad p_{58}(\gamma) = 2\gamma^2+\gamma+3 \\
S_{58} &= \Big\{\big(0,3\big), \big(1,1\big), \big(2,3\big), \big(3,4\big), \big(4,4\big)\Big\} = \big\{[15, 6, 17, 23, 24]\big\}
\end{align}
\begin{align}
\alpha_{59} &= [4, 1, 2]\,\quad p_{59}(\gamma) = 2\gamma^2+\gamma+4 \\
S_{59} &= \Big\{\big(0,4\big), \big(1,2\big), \big(2,4\big), \big(3,0\big), \big(4,0\big)\Big\} = \big\{[20, 11, 22, 3, 4]\big\}
\end{align}
The weak design is the collection of the 60 sets:
\begin{align}
W = \Big[
&\big\{0, 1, 2, 3, 4\big\}, \big\{5, 6, 7, 8, 9\big\}, \big\{10, 11, 12, 13, 14\big\}, \big\{15, 16, 17, 18, 19\big\}, \big\{20, 21, 22, 23, 24\big\}, \\
&\big\{0, 6, 12, 18, 24\big\}, \big\{5, 11, 17, 23, 4\big\}, \big\{10, 16, 22, 3, 9\big\}, \big\{15, 21, 2, 8, 14\big\}, \big\{20, 1, 7, 13, 19\big\}, \\
&\big\{0, 11, 22, 8, 19\big\}, \big\{5, 16, 2, 13, 24\big\}, \big\{10, 21, 7, 18, 4\big\}, \big\{15, 1, 12, 23, 9\big\}, \big\{20, 6, 17, 3, 14\big\}, \\
&\big\{0, 16, 7, 23, 14\big\}, \big\{5, 21, 12, 3, 19\big\}, \big\{10, 1, 17, 8, 24\big\}, \big\{15, 6, 22, 13, 4\big\}, \big\{20, 11, 2, 18, 9\big\}, \\
&\big\{0, 21, 17, 13, 9\big\}, \big\{5, 1, 22, 18, 14\big\}, \big\{10, 6, 2, 23, 19\big\}, \big\{15, 11, 7, 3, 24\big\}, \big\{20, 16, 12, 8, 4\big\}, \\
&\big\{0, 6, 22, 23, 9\big\}, \big\{5, 11, 2, 3, 14\big\}, \big\{10, 16, 7, 8, 19\big\}, \big\{15, 21, 12, 13, 24\big\}, \big\{20, 1, 17, 18, 4\big\}, \\
&\big\{0, 11, 7, 13, 4\big\}, \big\{5, 16, 12, 18, 9\big\}, \big\{10, 21, 17, 23, 14\big\}, \big\{15, 1, 22, 3, 19\big\}, \big\{20, 6, 2, 8, 24\big\}, \\
&\big\{0, 16, 17, 3, 24\big\}, \big\{5, 21, 22, 8, 4\big\}, \big\{10, 1, 2, 13, 9\big\}, \big\{15, 6, 7, 18, 14\big\}, \big\{20, 11, 12, 23, 19\big\}, \\
&\big\{0, 21, 2, 18, 19\big\}, \big\{5, 1, 7, 23, 24\big\}, \big\{10, 6, 12, 3, 4\big\}, \big\{15, 11, 17, 8, 9\big\}, \big\{20, 16, 22, 13, 14\big\}, \\
&\big\{0, 1, 12, 8, 14\big\}, \big\{5, 6, 17, 13, 19\big\}, \big\{10, 11, 22, 18, 24\big\}, \big\{15, 16, 2, 23, 4\big\}, \big\{20, 21, 7, 3, 9\big\}, \\
&\big\{0, 11, 17, 18, 14\big\}, \big\{5, 16, 22, 23, 19\big\}, \big\{10, 21, 2, 3, 24\big\}, \big\{15, 1, 7, 8, 4\big\}, \big\{20, 6, 12, 13, 9\big\}, \\
&\big\{0, 16, 2, 8, 9\big\}, \big\{5, 21, 7, 13, 14\big\}, \big\{10, 1, 12, 18, 19\big\}, \big\{15, 6, 17, 23, 24\big\}, \big\{20, 11, 22, 3, 4\big\}
\Big]
\end{align}